jdi na vlastní test/obsah stránky
doba polpremenystredná doba životareaktivitaperióda reaktora
doba polpremeny
stredná doba života
reaktivita
perióda reaktora
pomaléepitermálnerýchlerezonančné
pomalé
epitermálne
rýchle
rezonančné
"p" - pravdepodobnosť úniku rezonančnému záchytu (absorpcii)"η" - koeficient regenerácie"f" - koeficient využitia tepelných neutrónov"ε" - koeficient rozmnoženia rýchlymi neutrónmi
"p" - pravdepodobnosť úniku rezonančnému záchytu (absorpcii)
"η" - koeficient regenerácie
"f" - koeficient využitia tepelných neutrónov
"ε" - koeficient rozmnoženia rýchlymi neutrónmi
"f" - koeficient využitia tepelných neutrónov"η" - koeficient regenerácie"p" - pravdepodobnosť úniku rezonančnému záchytu (absorpcii)"ε" - koeficient rozmnoženia rýchlymi neutrónmi
stredná energia okamžitých neutrónov je 2MeV a oneskorených neutrónov 0,5MeVoneskorených neutrónov je menej ako 0,7% z celkového počtu neutrónovokamžitých neutrónov je viac ako99,3% z celkového počtu neutrónovokamžitých neutrónov je menej ako 0,7% z celkového počtu neutrónov
stredná energia okamžitých neutrónov je 2MeV a oneskorených neutrónov 0,5MeV
oneskorených neutrónov je menej ako 0,7% z celkového počtu neutrónov
okamžitých neutrónov je viac ako99,3% z celkového počtu neutrónov
okamžitých neutrónov je menej ako 0,7% z celkového počtu neutrónov
celkový teplotný koeficient reaktivity je daný súčtom koeficientov reaktivity od teploty moderátora (chladiva) a teploty palivavýkonný koeficient reaktivity je vždy zápornýsamoregulačné vlastnosti reaktora sa významnejšie prejavujú pri výkonoch pod 0,1% Nnom, teda na výkonovej prevádzke sa neprejavujú.bórový koeficient reaktivity je vždy záporný
celkový teplotný koeficient reaktivity je daný súčtom koeficientov reaktivity od teploty moderátora (chladiva) a teploty paliva
výkonný koeficient reaktivity je vždy záporný
samoregulačné vlastnosti reaktora sa významnejšie prejavujú pri výkonoch pod 0,1% Nnom, teda na výkonovej prevádzke sa neprejavujú.
bórový koeficient reaktivity je vždy záporný
oneskorené neutróny vznikajú viac ako zo 40 produktov štiepenia a rozdeľujú sa do šiestich skupín.oneskorené neutróny vznikajú desatiny až desatiny sekúnd po štiepení (úmerne polčasu rozpadu materského jadraoneskorené neutróny vznikajú po alfa premene niektorých produktov štiepeniastredná doba oneskorenia všetkých skupín oneskorených neutrónov pre 235U je 0,0943 s (0,1s)
oneskorené neutróny vznikajú viac ako zo 40 produktov štiepenia a rozdeľujú sa do šiestich skupín.
oneskorené neutróny vznikajú desatiny až desatiny sekúnd po štiepení (úmerne polčasu rozpadu materského jadra
oneskorené neutróny vznikajú po alfa premene niektorých produktov štiepenia
stredná doba oneskorenia všetkých skupín oneskorených neutrónov pre 235U je 0,0943 s (0,1s)
"ε" - koeficient rozmnoženia rýchlymi neutrónmi"p" - pravdepodobnosť úniku rezonančnému záchytu (absorpcii)"η" - koeficient regenerácie"f" - koeficient využitia tepelných neutrónov
fluidným spaľovaním uránovej rudychemickými procesmištiepením prírodného uránuštiepením jadier najmä 235U
fluidným spaľovaním uránovej rudy
chemickými procesmi
štiepením prírodného uránu
štiepením jadier najmä 235U
zdvíhanie HRK, nasycovanie filtrov očistky ŠOV-1, veľká bórová regulácia, malá bórová regulácia, stabilizácia reaktora na kritickom stavenasycovanie filtrov očistky ŠOV-1, veľká bórová regulácia, malá bórová regulácia, stabilizácia reaktora na kritickom stave, zdvíhanie HRKzdvíhanie HRK, stabilizácia reaktora na kritickom stave, nasycovanie filtrov očistky ŠOV-1, veľká bórová regulácia, malá bórová reguláciastabilizácia reaktora na kritickom stave, zdvíhanie HRK, nasycovanie filtrov očistky ŠOV-1, veľká bórová regulácia, malá bórová regulácia
zdvíhanie HRK, nasycovanie filtrov očistky ŠOV-1, veľká bórová regulácia, malá bórová regulácia, stabilizácia reaktora na kritickom stave
nasycovanie filtrov očistky ŠOV-1, veľká bórová regulácia, malá bórová regulácia, stabilizácia reaktora na kritickom stave, zdvíhanie HRK
zdvíhanie HRK, stabilizácia reaktora na kritickom stave, nasycovanie filtrov očistky ŠOV-1, veľká bórová regulácia, malá bórová regulácia
stabilizácia reaktora na kritickom stave, zdvíhanie HRK, nasycovanie filtrov očistky ŠOV-1, veľká bórová regulácia, malá bórová regulácia
235U241Pu238U239Pu
235U
241Pu
238U
239Pu
migračná dĺžka Mstredná voľná dráha λdifúzna dĺžka LFermiho vek neutrónov τ
migračná dĺžka M
stredná voľná dráha λ
difúzna dĺžka L
Fermiho vek neutrónov τ
p=1, kef= ∞, perióda reaktora T = 0 a v AZ prebieha riadená štiepna reakciap=0, kef=1, perióda reaktora T = ∞ a v AZ prebieha riadená štiepna reakciap= ∞, kef=1, perióda reaktora T = 0 a v AZ prebieha riadená štiepna reakciap=1, kef=0, perióda reaktora T = ∞ a v AZ prebieha riadená štiepna reakcia
p=1, kef= ∞, perióda reaktora T = 0 a v AZ prebieha riadená štiepna reakcia
p=0, kef=1, perióda reaktora T = ∞ a v AZ prebieha riadená štiepna reakcia
p= ∞, kef=1, perióda reaktora T = 0 a v AZ prebieha riadená štiepna reakcia
p=1, kef=0, perióda reaktora T = ∞ a v AZ prebieha riadená štiepna reakcia
"f" - koeficient využitia tepelných neutrónov"ε" - koeficient rozmnoženia rýchlymi neutrónmi"η" - koeficient regenerácie"p" - pravdepodobnosť úniku rezonančnému záchytu (absorpcii)
stredná voľná dráha λFermiho vek neutrónov τdifúzna dĺžka Lmigračná dĺžka M
149Sm236U239Pu135Xe
149Sm
236U
135Xe
pružný rozptyl a reakcia n-alfaštiepenie, radiačný záchyt a reakcia n-alfapružný rozptyl, štiepenie a radiačný záchytpružný rozptyl a štiepenie
pružný rozptyl a reakcia n-alfa
štiepenie, radiačný záchyt a reakcia n-alfa
pružný rozptyl, štiepenie a radiačný záchyt
pružný rozptyl a štiepenie
rovnica prevrátených hodínrovnica okamžitých hodínzákon rádioaktívnej premenyrovnica kinetiky reaktora
rovnica prevrátených hodín
rovnica okamžitých hodín
zákon rádioaktívnej premeny
rovnica kinetiky reaktora
maximálna nestacionárna otrava 135Xe sa dosahuje asi po 8-9 hodinách po výpadku reaktora zo 100% výkonukoncentráciu jadier 135Xe v reaktore možno znížiť len vyvezením časti vyhoretých palivových kazietstacionárna otrava 135Xe dosahuje hodnotu asi 2,6% reaktivity (pre 100% výkon reaktora)stacionárna otrava 135Xe sa dosiahne asi 2 dni po nábehu reaktora
maximálna nestacionárna otrava 135Xe sa dosahuje asi po 8-9 hodinách po výpadku reaktora zo 100% výkonu
koncentráciu jadier 135Xe v reaktore možno znížiť len vyvezením časti vyhoretých palivových kaziet
stacionárna otrava 135Xe dosahuje hodnotu asi 2,6% reaktivity (pre 100% výkon reaktora)
stacionárna otrava 135Xe sa dosiahne asi 2 dni po nábehu reaktora
perióda reaktoramultiplikačný koeficientefekt reaktivitykoeficient reaktivity
multiplikačný koeficient
efekt reaktivity
koeficient reaktivity
pokles mikroskopických účinných prierezov pre štiepenie, absorpciu a rozptylpokles hustoty moderátorapokles priemernej energie tepelných neutrónovpokles hustoty paliva
pokles mikroskopických účinných prierezov pre štiepenie, absorpciu a rozptyl
pokles hustoty moderátora
pokles priemernej energie tepelných neutrónov
pokles hustoty paliva
"s" - malé, " ξΣs" - malé, "ξΣs/Σa" - malé"s" - malé, " ξΣs" - veľké, "ξΣs/Σa" - veľké"s" - veľké, " ξΣs" - veľké, "ξΣs/Σa" - veľké"s" - malé, " ξΣs" - malé, "ξΣs/Σa" - veľké
"s" - malé, " ξΣs" - malé, "ξΣs/Σa" - malé
"s" - malé, " ξΣs" - veľké, "ξΣs/Σa" - veľké
"s" - veľké, " ξΣs" - veľké, "ξΣs/Σa" - veľké
"s" - malé, " ξΣs" - malé, "ξΣs/Σa" - veľké
149Sm vzniká len z rádioaktívnej premeny 149Pm149Sm zaniká záchytom neutrónov, t.j. vzniká 150Sm149Sm zaniká rádioaktívnou premenou na 149Pb149Sm je izotop s veľkým účinným prierezom pre absorpciu tepelných neutrónov
149Sm vzniká len z rádioaktívnej premeny 149Pm
149Sm zaniká záchytom neutrónov, t.j. vzniká 150Sm
149Sm zaniká rádioaktívnou premenou na 149Pb
149Sm je izotop s veľkým účinným prierezom pre absorpciu tepelných neutrónov
obsahuje Z protónov a N neutrónov, t.j. A=Z+N nukleónovobsahuje N protónov a Z neutrónov, t.j. A=Z+N nukleónovobsahuje N protónov a Z neutrónov, t.j. A=Z+N nuklidovobsahuje P protónov a N neutrónov, t.j. A=P+N nuklidov
obsahuje Z protónov a N neutrónov, t.j. A=Z+N nukleónov
obsahuje N protónov a Z neutrónov, t.j. A=Z+N nukleónov
obsahuje N protónov a Z neutrónov, t.j. A=Z+N nuklidov
obsahuje P protónov a N neutrónov, t.j. A=P+N nuklidov
prudko inteligentá vílastrašiak do makuanonymný dobrodinec, ktorému nikdy nie je zimaindiánsky náčelník oblak pary
prudko inteligentá víla
strašiak do maku
anonymný dobrodinec, ktorému nikdy nie je zima
indiánsky náčelník oblak pary
hodnotu reaktivity možno vyjadriť v absolútnych jednotkách p=(kef-1)/kefhodnotu reaktivity možno vyjadriť v eurách p=(kef-1)*βef/kefreaktivita vyjadruje mieru odklonu reaktora od kritického stavu p=(kef-1)/kefhodnotu reaktivity možno vyjadriť v percentách p=(kef-1)*100/kef
hodnotu reaktivity možno vyjadriť v absolútnych jednotkách p=(kef-1)/kef
hodnotu reaktivity možno vyjadriť v eurách p=(kef-1)*βef/kef
reaktivita vyjadruje mieru odklonu reaktora od kritického stavu p=(kef-1)/kef
hodnotu reaktivity možno vyjadriť v percentách p=(kef-1)*100/kef
238U klesá241Pu rastie239Pu klesá235U klesá
238U klesá
241Pu rastie
239Pu klesá
235U klesá
palivoradiátormoderátorreflektor
palivo
radiátor
moderátor
reflektor
135Xe zaniká rádioaktívnou premenou na 135Cs135Xe vzniká priamo zo štiepenia a z rádioaktívnej premeny 135I135Xe je izotop s veľkým účinným prierezom pre absorpciu tepelných neutrónov135Xe nezaniká záchytom neutrónov
135Xe zaniká rádioaktívnou premenou na 135Cs
135Xe vzniká priamo zo štiepenia a z rádioaktívnej premeny 135I
135Xe je izotop s veľkým účinným prierezom pre absorpciu tepelných neutrónov
135Xe nezaniká záchytom neutrónov
jadrá s rovnakým počtom neutrónov a rôznym počtom protónovjadrá s rovnakým počtom protónov a rôznym počtom neutrónovvšeobecné pomenovanie pre všetky jadrájadrá s rovnakým počtom nekleónov
jadrá s rovnakým počtom neutrónov a rôznym počtom protónov
jadrá s rovnakým počtom protónov a rôznym počtom neutrónov
všeobecné pomenovanie pre všetky jadrá
jadrá s rovnakým počtom nekleónov
do 2 skupín s A=(80-110) a A=(125-160) pričom maximálny výťažok je cca 6,4%do 4 skupín s A=(20-80) a A=(80-130) a A=(130-180) a A=(180-230)do 3 skupín s A=(40-100), A=(100-160) a A=(160-220)do 2 skupín s A=(40-120) a A=(120-220), pričom maximálny výtažok je cca 1,1%
do 2 skupín s A=(80-110) a A=(125-160) pričom maximálny výťažok je cca 6,4%
do 4 skupín s A=(20-80) a A=(80-130) a A=(130-180) a A=(180-230)
do 3 skupín s A=(40-100), A=(100-160) a A=(160-220)
do 2 skupín s A=(40-120) a A=(120-220), pričom maximálny výtažok je cca 1,1%
grafit Chélium Heľahká voda H2Oťažká voda D2O
grafit C
hélium He
ľahká voda H2O
ťažká voda D2O
"Ps" - pravdepodobnosť, že neutrón neunikne v procese spomaľovania"kef" - multiplikačný koeficient pre reaktor konečných rozmerov"k∞" - multiplikačný koeficient pre nekonečne malý reaktor"Pt" - pravdepodobnosť, že neutrón neunikne v procese difúzie
"Ps" - pravdepodobnosť, že neutrón neunikne v procese spomaľovania
"kef" - multiplikačný koeficient pre reaktor konečných rozmerov
"k∞" - multiplikačný koeficient pre nekonečne malý reaktor
"Pt" - pravdepodobnosť, že neutrón neunikne v procese difúzie
priemerná väzbová energia všetkých nuklidovväzbová energia pripadajúca na jeden protón a je najväčšia pre skupinu izotopov v okolí vodíkaväzbová energia pripadajúca na jeden nukleón a je najväčšia pre skupinu izotopov v okolí uránuväzbová energia pripadajúca na jeden nukleón a je najväčšia pre skupinu izotopov v okolí železa
priemerná väzbová energia všetkých nuklidov
väzbová energia pripadajúca na jeden protón a je najväčšia pre skupinu izotopov v okolí vodíka
väzbová energia pripadajúca na jeden nukleón a je najväčšia pre skupinu izotopov v okolí uránu
väzbová energia pripadajúca na jeden nukleón a je najväčšia pre skupinu izotopov v okolí železa
alfa premena 235U a 238Uspontánne štiepenie 239Pu a 240Pureakcia n-alfa na jadrách 10Bspontánne štiepenie 235U a 238U
alfa premena 235U a 238U
spontánne štiepenie 239Pu a 240Pu
reakcia n-alfa na jadrách 10B
spontánne štiepenie 235U a 238U
239Pu, následne beta mínus rozpadmi 240Pu a 241Pu135Xe, následne beta mínus rozpadmi 135Cs a 135Ba149Sm, následne beta mínus rozpadmi 239Np a 239Pu239U, následne beta mínus rozpadmi 239Np a 239Pu
239Pu, následne beta mínus rozpadmi 240Pu a 241Pu
135Xe, následne beta mínus rozpadmi 135Cs a 135Ba
149Sm, následne beta mínus rozpadmi 239Np a 239Pu
239U, následne beta mínus rozpadmi 239Np a 239Pu
1/16 hmotnosti atómu 16O1/14 hmotnosti atómu 14C1/12 hmotnosti atómu 12C1/12 hmotnosti atómu 12N
1/16 hmotnosti atómu 16O
1/14 hmotnosti atómu 14C
1/12 hmotnosti atómu 12C
1/12 hmotnosti atómu 12N
rádioaktívny rozpad nie je štatistický jav. Možno povedať, kedy sa presne rozpadne dané jadro.rádioaktívny rozpad je štatistický jav. Možno povedať, kedy sa presne rozpadne dané jadro.rádioaktívny rozpad je štatistický jav. Nemožno povedať, kedy sa presne rozpadne dané jadro, ale iba ukázať, s akou pravdepodobnosťou sa jadro rozpadne za daný časový úsekrádioaktívny rozpad nie je štatistický jav. Nemožno povedať, kedy sa presne rozpadne dané jadro, ale iba ukázať, s akou pravdepodobnosťou sa jadro rozpadne za daný časový úsek
rádioaktívny rozpad nie je štatistický jav. Možno povedať, kedy sa presne rozpadne dané jadro.
rádioaktívny rozpad je štatistický jav. Možno povedať, kedy sa presne rozpadne dané jadro.
rádioaktívny rozpad je štatistický jav. Nemožno povedať, kedy sa presne rozpadne dané jadro, ale iba ukázať, s akou pravdepodobnosťou sa jadro rozpadne za daný časový úsek
rádioaktívny rozpad nie je štatistický jav. Nemožno povedať, kedy sa presne rozpadne dané jadro, ale iba ukázať, s akou pravdepodobnosťou sa jadro rozpadne za daný časový úsek
súčet prinesenej kinetickej a väzbovej energie neutrónu je väčší ako aktivačná energia (energia potrebná na rozštiepenie jadra)aktivačná energia (energia potrebná na rozštiepenie jadra) je väčšia ako súčet prinesenej kinetickej a väzbovej energie neutrónusúčet prinesenej aktivačnej a väzbovej energie neutrónu je väčší ako kinetická energia neutrónuje kinetická energia neutrónu väčšia ako jeho väzbová energia
súčet prinesenej kinetickej a väzbovej energie neutrónu je väčší ako aktivačná energia (energia potrebná na rozštiepenie jadra)
aktivačná energia (energia potrebná na rozštiepenie jadra) je väčšia ako súčet prinesenej kinetickej a väzbovej energie neutrónu
súčet prinesenej aktivačnej a väzbovej energie neutrónu je väčší ako kinetická energia neutrónu
je kinetická energia neutrónu väčšia ako jeho väzbová energia
149Sm je izotop s veľkým účinným prierezom pre absorpciu tepelných neutrónov149Sm zaniká záchytom neutrónov, t.j. vzniká 150Sm149Sm vzniká len z rádioaktívnej premeny 149Pm149Sm zaniká rádioaktívnou premenou na 149Pb
rozptyl a absorpciaštiepenie a radiačný záchytštiepenie a reakcia n-alfarozptyl a štiepenie
rozptyl a absorpcia
štiepenie a radiačný záchyt
štiepenie a reakcia n-alfa
rozptyl a štiepenie
berýliumťažká vodavodagrafit
berýlium
ťažká voda
voda
grafit
pomer počtu neutrónov k počtu protónov je v oblasti "krivky stability"pomer pomer počtu neutrónov k počtu protónov pre niektoré ľahké jadrá môže byť 1:1pomer počtu neutrónov k počtu protónov pre ľahké jadrá je cca 1,5:1pomer počtu neutrónov k počtu protónov pre ťažké jadrá je cca 1,5:1
pomer počtu neutrónov k počtu protónov je v oblasti "krivky stability"
pomer pomer počtu neutrónov k počtu protónov pre niektoré ľahké jadrá môže byť 1:1
pomer počtu neutrónov k počtu protónov pre ľahké jadrá je cca 1,5:1
pomer počtu neutrónov k počtu protónov pre ťažké jadrá je cca 1,5:1
stacionárna otrava 149Sm sa dosiahne asi 50 dní po nábehu reaktora na 100% výkonmaximálna nestacionárna otrava 149Sm sa dosahuje po 15 dňoch po výpadku reaktora to 100% výkonustacionárna otrava 149Sm dosahuje hodnotu asi 0,6% reaktivity a nezávisí na výkone reaktorakoncentráciu jadier 149Sm v reaktore nemožno znížiť vyvezením časti vyhoretých palivových kaziet
stacionárna otrava 149Sm sa dosiahne asi 50 dní po nábehu reaktora na 100% výkon
maximálna nestacionárna otrava 149Sm sa dosahuje po 15 dňoch po výpadku reaktora to 100% výkonu
stacionárna otrava 149Sm dosahuje hodnotu asi 0,6% reaktivity a nezávisí na výkone reaktora
koncentráciu jadier 149Sm v reaktore nemožno znížiť vyvezením časti vyhoretých palivových kaziet
štiepením jadier najmä 235Uchemickými procesmištiepením prírodného uránufluidným spaľovaním uránovej rudy
chemická zlúčeninaprvokzáporná časticazákladná súčasť jadra atómu
chemická zlúčenina
prvok
záporná častica
základná súčasť jadra atómu
jdi nahoru, na obsah
Sex a vztahy (17)Ano/Ne (22)Zdraví (19)Ostatní (152)Vaše testy (183)Nezařazené (53)
Uživatelské jméno
Heslo